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Executive Summary 
This project aims to develop a systematic way to design smart highway systems with networked 
video monitoring and control resiliency against environment disruptions and sensor failures. On 
the video monitoring side, we investigate 1) efficient deep learning methods for extracting fine-
grained local categorical traffic information from individual surveillance videos (e.g., traffic 
mixture, environment information, anomaly/extreme-weather detection in the scene), and 2) 
machine learning-based methods to correlate and propagate the local information through the 
highway network for global states estimation (e.g., vehicle tracking and reidentification, traffic 
prediction in unobserved area). On the system design side, we 1) establish dynamic models for 
capacity using video data, 2) model failure in either cyber or physical components, 3) study the 
relation between sensor deployment and observability for resilient traffic control (e.g. route 
guidance and ramp metering). The outcome is an implementable approach to designing 
resilient smart highway systems with trustworthy monitoring capability. We also expect our 
approach (with appropriate modification) to be applicable to general transportation systems. 
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Section 1: Introduction 
The growing deployment of surveillance cameras in highway systems can provide system 
operators with richer information such as weather, incidents, and other traffic-disrupting 
events, which conventional sensors (e.g. loop inductors) cannot provide. However, two 
important questions have to be addressed before extensive implementation. First, how to 
accurately and robustly retrieve relevant information from not only an individual camera but 
networked cameras, especially fine-grained vehicle recognition and tracking, anomaly 
detection, and predictions in unobserved areas. Second, how to design a resilient control 
system that maximizes the use of camera data while minimizing the negative impact of sensor 
failures and error in data processing. These questions have to be jointly addressed, since the 
performance of automatic video monitoring, the deployment (number and locations) of 
surveillance cameras, and traffic control algorithm based on real-time information are closely 
related and interdependent. 

For the monitoring part, thanks to the recent development of deep learning techniques, 
especially convolutional neural networks (CNN), accurate, robust, and efficient object detection 
in images and videos has become more accessible, e.g., state-of-the-art CNN architectures like 
Fast-RCNN/SSD/Yolo/Mask-RCNN provide strong algorithm backbones to address the 
traditional challenges such as partial occlusion, cluttered scene, etc. However, most existing 
data-driven methods focus on traffic monitoring from single cameras. Very recently, 
researchers started to investigate data-driven analysis of networked videos for traffic analysis. 
However, these methods do not systematically take a transportation network structure into 
consideration using a data-driven approach. 

For the system design part, although numerous efforts have been devoted to design of 
performance-improving traffic control systems, the existing approaches typically assume 
deterministic environment (demand/capacity) and fully functional sensors. This project 
considers a more realistic setting where the environment is subject to disruptions and the 
sensors (cameras) are subject to failures. 

Subsection 1.1 Learning-based monitoring 

Recent years have witnessed the tremendous success of deep neural networks in a variety of 
tasks. With its over-parameterization nature and hierarchical structure, deep neural networks 
achieve unprecedented performance on many challenging problems [1, 2, 3], but their strong 
ap- proximation ability also makes it easy to overfit the training set, which greatly affects the 
generalization on unseen samples. Therefore, how to restrict the huge parameter space and 
properly regularize the deep networks becomes increasingly important. Regularizations for 
neural networks can be roughly categorized into implicit and explicit ones. Implicit 
regularizations usually do not directly impose explicit constraints on neuron weights, and 
instead they regularize the networks in an implicit manner in order to prevent overfit- ting and 
stabilize the training. A lot of prevailing methods fall into this category, such as batch 
normalization [4], dropout [5], weight normalization [6], etc. Explicit regularizations [7, 8, 9, 10, 
11, 12] usually introduce some penalty terms for neuron weights, and jointly optimize them 
along with the other objective functions. 
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Figure 1.1: Comparison of original MHE and compressive MHE. 

Among many existing explicit regularizations, minimum hyperspherical energy (MHE) [12] 
stands out as a simple yet effective regularization that promotes the hyperspherical diversity 
among neurons and significantly improves the network generalization. MHE regularizes the 
directions of neuron weights by minimizing a potential energy on a unit hypersphere that 
characterizes the hyperspherical diversity (such energy is defined as hyperspherical energy 
[12]). In contrast, standard weight decay only regularizes the norm of neuron weights, which 
essentially can be viewed as regularizing one dimension of the weights. MHE completes an 
important missing piece by regularizing the neuron directions (i.e., regularizing the rest 
dimensions of the weights). 

    Although minimizing hyperspherical energy has already been empirically shown useful in a 
number of applications [12], two fundamental questions remain unanswered:(1) what is the 
role that hyperspherical energy plays in training a well-performing neural network? and (2) How 
can the hyperspherical energy be effectively minimized? To study the first question, we plot the 
training dynamics of hyperspherical energy (on CIFAR-100) in Figure 1.1(c) for a baseline 
convolutional neural network (CNN) without any MHE variant, a CNN regularized by MHE [12] 
and a CNN regularized by our CoMHE. From the empirical results in Figure 1.1(c), we find that 
both MHE and CoMHE can achieve much lower hyperspherical energy and testing error than 
the baseline, showing the effectiveness of minimizing hyperspherical energy. It also implies that 
lower hyperspherical energy typically leads to better generalization. We empirically observe 
that a trained neural network with lower hyperspherical energy often generalizes better (i.e., 
higher hyperspherical diversity leads to better generalization), and therefore we argue that 
hyperspherical energy is closely related to the generalization power of neural networks. In the 
rest of the paper, we delve into the second question that remains an open challenge: how to 
effectively minimize hyperspherical energy. 

    By adopting the definition of hyperspherical energy as the regularization objective and 
naively minimizing it with back-propagation, MHE suffers from a few critical problems which 
limit it to further unleash its potential. First, the original MHE objective has a huge number of 
local minima and stationary points due to its highly non-convex and non-linear objective 
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function. The problem can get even worse when the space dimension gets higher and the 
number of neurons becomes larger [13, 14]. Second, the gradient of the original MHE objective 
w.r.t the neuron weight is deterministic. Unlike the weight decay whose objective is convex, 
MHE has a complex and non-convex regularization term. Therefore, deterministic gradients 
may make the solution quickly fall into one of the bad local minima and get stuck there. Third, 
MHE defines an ill-posed problem in general. When the number of neurons is smaller than the 
dimension of the space (it is often the case in neural net- works), it will be less meaningful to 
encourage the hyper- spherical diversity since the neurons cannot fully occupy the space. Last, 
in high-dimensional spaces, randomly initialized neurons are likely to be orthogonal to each 
other. Therefore, these high-dimensional neurons can be trivially “diverse”, leading to small 
gradients in original MHE that cause optimization difficulties. 

    In order to address these problems and effectively minimize hyperspherical energy, we 
propose the compressive minimum hyperspherical energy (CoMHE) as a generic regularization 
for neural networks. The high-level intuition behind CoMHE is to project neurons to some 
suitable subspaces such that the hyperspherical energy can get minimized more effectively. 
Specifically, CoMHE first maps the neurons from a high-dimensional space to a low- 
dimensional one and then minimizes the hyperspherical energy of these neurons. Therefore, 
how to map these neuons to a low-dimensional space while preserving the desirable 
information in high-dimensional space is our major concern. Since we aim to regularize the 
directions of neurons, what we care most is the angular similarity between different neurons. 
To this end, we explore multiple novel methods to perform the projection and heavily study 
two main approaches: random projection and angle-preserving projection, which can reduce 
the dimensionality of neurons while still partially preserving the pairwise angles. 

    Random projection (RP) is a natural choice to perform the dimensionality reduction in MHE 
due to its simplicity and nice theoretical properties. RP can provably preserve the angular 
information, and most importantly, introduce certain degree of randomness to the gradients, 
which may help CoMHE escape from some bad local minima. The role that the randomness 
serves in CoMHE is actually similar to the simulated annealing [15, 16] that is widely used to 
solve Thomson problem. Such randomness is often shown to benefit the generalization [17, 
18]. We also provably show that using RP can well preserve the pairwise angles between 
neurons. Besides RP, we propose the angle-preserving projection (AP) as an effective 
alternative. AP is motivated by the goal that we aim to preserve the pairwise angles between 
neurons. Constructing an AP that can project neurons to a low-dimensional space that well 
preserves the angles is of- ten difficult even with powerful non-linear functions, which is 
suggested by the strong conditions required for conformal mapping in complex analysis [19]. 
Therefore, we frame the AP construction as an optimization problem which can be solved 
jointly with hyperspherical energy minimization. More interestingly, we consider the adversarial 
projection for CoMHE, which minimizes the maximal energy attained by learning the projection. 
We formulate it as a min-max optimization and optimize it jointly with the neural network. 

    However, it is inevitable to lose some information in low-dimensional spaces and the neurons 
may only get diverse in some low-dimensional spaces. To address it, we adopt multiple 
projections to better approximate the MHE objective in the original high-dimensional space. 
Specifically, we project the neurons to multiple subspaces, compute the hyperspherical energy 



 

 
Design of Resilient Smart Highway Systems with Data-Driven Monitoring from Networked Cameras   4 

in each space separately and then minimize the aggregation (i.e., average or max). Moreover, 
we reinitialize these projection matrices randomly every certain number of iterations to avoid 
trivial solutions. 

In contrast to MHE that imposes a static regularization to the neurons, CoMHE dynamically 
regularizes the neurons based on the projection matrices. Such dynamic regularization is 
equivalent to adjusting the CoMHE objective function, making it easier to escape some bad 
local minima. Our contributions can be summarized as: 

• We first show that hyperspherical energy is closely related to generalization and then 
reveal the role it plays in training a neural network that generalizes well. 

• To address the drawbacks of MHE, we propose CoMHE as a dynamic regularization to 
effectively minimize hyperspherical energy of neurons for better generalizability. 

• We explore different ways to construct a suitable projection for CoMHE. Random 
projection and angle-preserving projection are proposed to reduce the dimensionality of 
neurons while preserving the angular information. We also consider several variants 
such as adversarial projection CoMHE and group CoMHE. 

• We provide some theoretical insights for the proposed projections on the quality of 
preserving the angular similarity between different neurons. 

• We show that CoMHE consistently outperforms the original MHE in different tasks. 
Notably, a 9-layer plain CNN regularized by CoMHE outperforms a standard1001-layer 
ResNet by more than 2% on CIFAR-100. 

Subsection 1.2 Fault-tolerant traffic control 

The rapidly growing deployment of traffic sensing and vehicle-to-vehicle/infrastructure (V2V/ 
V2I) communications has enabled the concept of intelligent transportation system (ITS). In ITS, 
system operators and travelers have access to real-time traffic conditions and can thus make 
better decisions. Dynamic routing is a typical ITS capability, which is conducted via route 
guidance tools such as Google Maps and WAZE. System operators can also influence routing via 
tolling and instructions for traffic diversion, which also rely on real-time traffic conditions. A 
major challenge for dynamic routing in ITS is how to ensure system functionality and efficiency 
under a variety of sensing faults. Quality of sensing and communications significantly affects 
system performance. However, data health is a serious issue that system operators must face. 
On some highways, up to 30%-40% of loop sensors do not report accurate measurements [1, 2]; 
similar issue exists for camera sensors. Even though some routing guidance tools may have 
certain internal fault detection and correction actions, the benefits of such actions can be 
further evaluated. Moreover, without appropriate fault-tolerant mechanisms, feedback control 
algorithms may make decisions based on wrong information, and ITS may even perform worse 
than a comparable conventional transportation system. Therefore, ITS will not be well accepted 
by the public and transportation authorities unless the impact of sensing faults is adequately 
evaluated and addressed. However, such impact has not been well understood, and practically 
relevant fault-tolerant routing algorithms have not been developed. 
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Our modeling approach is innovative in that we model the occurrence and clearance of sensing 
faults as a finite-state, continuous-time Markov process. If the sensing on a link is normal, 
travelers know the true traffic state (traffic density) on the link. If the sensing is faulty, the 
traffic state will appear to be zero to the travelers. Besides such denial-of-service, our modeling 
approach can also be extended to incorporate other forms of sensing faults, such as bias and 
distortion. We adopt the classical logit model [15] for routing; the essential principle of this 
model is that more traffic will go to a less congested link. When the sensing on a link is faulty, 
travelers may mistakenly consider a congested link to be uncongested. We show that such 
faulty information may affect the network’s throughput. The discrete states of the Markov 
process are essentially modes for the flow dynamics, which govern the evolution of the 
continuous states. Hence, our model belongs to a class of stochastic processes called piecewise-
deterministic Markov processes [16, 17]. Similar models have been used for demand/capacity 
fluctuations [18, 19]; this paper extends the modeling approach to sensing faults. 

A key step for resilience analysis is to determine the stability of the traffic densities under 
various combinations of parameters. We study the stability of the network based on the theory 
of continuous-time Markov processes [20]. We derive a necessary condition for stability by 
constructing a positively invariant set for the dynamic flow network. We derive a sufficient 
condition by considering a quadratic, switched Lyapunov function that verifies the Foster-
Lyapunov drift condition. We exploit a special property of the flow dynamics, called cooperative 
dynamics [21, 22], to derive an easy-to-check stability criterion, which states that the network is 
stable if there exists a queuing state such that the rate of change of the fastest growing queue 
averaged over the modes is negative. Based on the stability analysis, we analyze the network’s 
throughput (resilience score). We define throughput as the maximal inflow that the network 
can take while maintaining stable. As a baseline, we first study the behavior of the network if 
both links have the same flow functions. We perturb the baseline in multiple dimensions 
(probability and correlation of sensing faults on two links) and analyze how throughput can be 
affected. We also show that throughput reduces as the two link’s asymmetry increases. 

The main contributions of this project include  

• A novel stochastic model for sensing fault-prone transportation networks,  

• Easy-to-check stability conditions for the network, and  

• Resilience analysis under various settings. 
  



 

 
Design of Resilient Smart Highway Systems with Data-Driven Monitoring from Networked Cameras   6 

Section 2: Literature Review 
Subsection 2.1 Learning-based monitoring 
Diversity-based regularization has been found useful in sparse coding (Mairal et al. 09, Ramirez 
et al. 10), ensemble learning (Li et al. 12, Knuncheva & Whitaker 03), self-paced learning (Jiang 
et al. 14), metric learning (Xie et al. 18), latent variable models (Xie et al. 16), etc. Early studies 
in sparse coding (Mairal et al. 09, Ramirez et al. 10) model the diversity with the empirical 
covariance matrix and show that encouraging such diversity can improve the dictionary's 
generalizability (Xie et al. 17) promotes the uniformity among eigenvalues of the component 
matrix in a latent space model (Cogswell 16, Rodriguez 17, Xie et al. 17) characterize diversity 
among neurons with orthogonality, and regularize the neural network by promoting the 
orthogonality. Inspired by the Thomson problem in physics, MHE (Liu et al. 18) defines the 
hyperspherical energy to characterize the diversity on a unit hypersphere and shows significant 
and consistent improvement in supervised learning tasks. There are two MHE variants in (Liu et 
al. 18): full-space MHE and half-space MHE. Compared to full-space MHE, the half-space variant 
further eliminates the collinear redundancy by constructing virtual neurons with the opposite 
direction to the original ones and then minimizing their hyperspherical energy together. The 
importance of regularizing angular information is also discussed in (Liu et al. 16, Deng et al. 18, 
Wang et al. 18). 
 

Subsection 2.2: Fault-tolerant traffic control 
Existing model-based traffic management approaches typically assume complete knowledge of 
the traffic condition (Gomes & Horowitz 06, Coogan & Arcak 15, Reilly et al. 15, Yu & Krstic 19), 
but feedback traffic management for ITS in the face of sensing faults has not been well studied. 
Como et al. (12) studied the resilience of distributed routing in the face of physical disruptions 
to link capacities in a dynamic flow network. Lygeros et al. (00) proposed a conceptual 
framework for fault-tolerant traffic management, but the concrete algorithms are still yet to be 
developed. A body of work on fault-tolerant control has been developed for a class of 
dynamical systems (Patton 97, Blanke et al. 06, Zhang & Jiang 08). However, very limited results 
are available for recurrent and random faults. In addition, there exist some results on 
adaptive/learning-based fault-tolerant control with applications in 
electrical/mechanical/aerospace engineering (Zhang et al. 04, Mhaskar et al. 06, Tang et al. 07), 
but these results are not directly applicable to ITS, nor do they explicitly consider stochastic 
sensing faults. 
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Section 3: Multi-source data imputation 
Subsection 3.1 Overview 

We have investigated multiple deep neural network architecture designs and significantly 
improved the computer-vision-based vehicle detection and counting’s efficiency and accuracy 
and updated the software prototype code for better visualization of the results. We also tested 
the performance on various weather conditions including raining. The investigation results 
demonstrated effectiveness of tracking and counting vehicles from existing traffic cameras. The 
experimental results not only showed that the overall vision-based vehicle counting 
performance is comparable to that of loop-detector-based method, but also showed that extra 
detail traffic statistics such as categorical vehicle counting (truck vs. car) is achievable now. 
Meanwhile, the investigation revealed several practical challenges in state-of-the-art vision-
based object detection and tracking algorithms that results in inaccurate vehicle detection and 
counting. This includes both the various resolutions and mounting setups of real-world traffic 
camera images that leading to different vehicle size and visual features in the captured images, 
and also inconsistent sampling rate across different traffic cameras among which some often 
have non-smooth video stream or large time gaps between neighboring frames that challenges 
existing object tracking methods. This shows that to apply existing computer vision object 
detection and tracking algorithms that are usually designed and trained on datasets collected in 
self-driving scenes are not necessarily optimal for traffic video analysis from a transportation 
engineering perspective. A custom, human annotated, large-scale dataset focusing on traffic 
video collected from traffic cameras would greatly improve the performance and is 
recommended for future projects on the same topic. This effort has trained a team of two 
graduate students and four senior students from computer science to attend a closely related 
public vision-based transportation video analysis competition. 

As mentioned above, deep neural network is the most fundamental building block that ensures 
the good performance of a data-driven monitoring system based on networked cameras or 
other sensors (e.g., Lidars). Current deep networks for 2D/3D object detection or tracking are 
usually trained by cross-entropy loss and L2 loss with simple L2-based regularization of the 
network parameters. To improve the network’s generalization performance when tested on 
traffic surveillance data, we need to improve the network regularization method. Inspired by 
the Thomson problem in physics where the distribution of multiple propelling electrons on a 
unit sphere can be modeled via minimizing some potential energy, hyperspherical energy 
minimization has demonstrated its potential in regularizing neural networks and improving 
their generalization power. In this section, we first study the important role that hyperspherical 
energy plays in neural network training by analyzing its training dynamics. Then we show that 
naively minimizing hyperspherical energy suffers from some difficulties due to highly non-linear 
and non-convex optimization as the space dimensionality becomes higher, therefore limiting 
the potential to further improve the generalization. To address these problems, we propose the 
compressive minimum hyperspherical energy (CoMHE) as a more effective regularization for 
neural networks. Specifically, CoMHE utilizes projection mappings to reduce the dimensionality 
of neurons and minimizes their hyperspherical energy. According to different designs for the 
projection mapping, we propose several distinct yet well-performing variants and provide some 
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theoretical guarantees to justify their effectiveness. Our experiments show that CoMHE 
consistently outperforms existing regularization methods, and can be easily applied to different 
neural networks. 

Subsection 3.2 Compressive MHE  

Revisiting Standard MHE 

MHE characterizes the diversity of N neurons ( 𝑊𝑁 = {𝑤1,⋯ ,𝑤𝑁 ∈ ℝ𝑑+1} ) on a unit 
hypersphere using hyperspherical energy which is defined as 

𝐸𝑠,𝑑(𝑤̂𝑖|𝑖=1
𝑁 ) = ∑ ∑ 𝑓𝑠

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

(‖𝑤̂𝑖 − 𝑤̂𝑗‖) 

    = {
∑ ‖𝑤̂𝑖 − 𝑤̂𝑗‖

−𝑠
𝑖≠𝑗 , 𝑠 > 0

∑ 𝑙𝑜𝑔(‖𝑤̂𝑖 − 𝑤̂𝑗‖
−1

)𝑖≠𝑗 , 𝑠 = 0
   （1） 

where ‖⋅‖ denotes 𝑙2 norm, 𝑓𝑠(⋅)is a decreasing realvalued function(we use 𝑓𝑠(𝑧) = 𝑧−𝑠, 𝑠 >
0,i.e., Riesz s-kernels), and 𝑤̂𝑖 = 𝑤𝑖/‖𝑤𝑖‖ is the i-th neuron weight projected onto the unit 

hypersphere 𝕊𝑑 = {𝑣 ∈ ℝ𝑑+1 ∣ ‖𝑣‖ = 1}. For convenience, we denote 𝑊̂𝑁 = {𝑤̂1,⋯ , 𝑤̂𝑁 ∈

𝕊𝑑}, and 𝐸𝑠 = 𝐸𝑠,𝑑(𝑤̂𝑖|𝑖=1
𝑁 ). Note that, each neuron is a convolution kernel in CNNs. MHE 

minimizes the hyperspherical energy of neurons using gradient descent during back-
propagation, and MHE is typically applied to the neural network in a layer-wise fashion. We first 
write down the gradient of E2 w.r.t 𝑤̂𝑖 and make the gradient to be zero: 

                                           𝛻𝑤̂𝑖
𝐸2 = ∑

−2(𝑤̂𝑖−𝑤̂𝑗)

‖𝑤̂𝑖−𝑤̂𝑗‖
4

𝑁
𝑗=1,𝑗≠𝑖 = 0 ⇒ 𝑤̂𝑖 =

∑ 𝛼𝑗
𝑁
𝑗=1,𝑗≠𝑖 𝑤̂𝑗

∑ 𝛼𝑗
𝑁
𝑗=1,𝑗≠𝑖

            （2） 

where 𝛼𝑗 = ‖𝑤̂𝑖 − 𝑤̂𝑗‖
−4

. We use toy and informal examples to show that high dimensional 

space (i.e, d is large) leads to much more stationary points than low-dimensional one. Assume 

there are 𝐾 = 𝐾1 + 𝐾2 stationary points in total for 𝑊̂𝑁 to satisfy Eq.2, where 𝐾1 denotes the 
number of stationary points in which every element in the solution is distinct and 𝐾2 denotes 
the number of the rest stationary points. We give two examples: (i) For(d+2)-dimensional 
space, we can extend the solutions in(d+1)-dimensional space by introducing a new dimension 
with zero value.  The new solutions satisfy Eq.2. Because there are d+2 ways to insert the zero, 

we have at least(d+2)K stationary points in (d+2)-dimensional space.(ii) We denote 𝐾1
′ =

𝐾1

(𝑑+1)!
 

as the number of unordered sets that construct the stationary points. In(2d+2)-dimensional 

space, we can construct 𝑤̂𝑗
𝐸 =

1

√2
{𝑤̂𝑗; 𝑤̂𝑗} ∈ 𝕊2𝑑+1, ∀𝑗 that satisfies Eq.2. Therefore, there are 

at least 
(2𝑑+2)!

2𝑑+1 𝐾1
′ + 𝐾2 stationary points for 𝑊̂𝑁 in(2d+2)-dimensional space, and besides this 

construction, there are much more stationary points. Therefore, MHE have far more stationary 
points in higher dimensions. 
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General Framework 

    To overcome MHE's drawbacks in high dimensional space, we propose the compressive MHE 
that projects the neurons to a low-dimensional space and then minimizes the hyperspherical 
energy of the projected neurons. In general, CoMHE minimizes the following form of energy: 

                                  𝐸𝑠
𝐶(𝑊̂𝑁):= ∑ ∑ 𝑓𝑠

𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1 (‖𝑔(𝑤̂𝑖) − 𝑔(𝑤̂𝑗)‖)                              (3) 

where 𝑔: 𝕊𝑑 → 𝕊𝑘  takes a normalized (d+1)-dimensional input and outputs a normalized (k+1)-
dimensional vector. g(·) can be either linear or nonlinear mapping. We only consider the linear 
case here. Using multi-layer perceptrons as g(·) is one of the simplest nonlinear cases. Similar to 
MHE, CoMHE also serves as a regularization in neural networks. 

Random Projection for CoMHE 

Random projection is in fact one of the most straightforward way to reduce dimensionality 
while partially preserving the angular information. More specifically, we use a random mapping 

𝑔(𝑣) = 𝑃𝑣/‖𝑃𝑣‖ where 𝑃 ∈ ℝ(𝑘+1)×(𝑑+1) is a Gaussian distributed random matrix (each entry 
follows i.i.d. normal distribution). In order to reduce the variance, we use C random projection 
matrices to project the neurons and compute the hyperspherical energy separately: 

  𝐸𝑠
𝑅(𝑊̂𝑁):=

1

𝐶
∑ ∑ ∑ 𝑓𝑠

𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1

𝐶
𝑐=1 (‖

𝑃𝑐𝑤̂𝑖

‖𝑃𝑐𝑤̂𝑖‖
−

𝑃𝑐𝑤̂𝑗

‖𝑃𝑐𝑤̂𝑗‖
‖)                        (4) 

where 𝑃𝑐 , ∀𝑐 is a random matrix with each entry following the normal distribution N(0,1). 

According to the properties of normal distribution[41]，every normalized row of the random 

matrix P is uniformly distributed on a hypersphere 𝕊𝑑，which indicates that the projection 
matrix P is able to cover all the possible subspaces. Multiple projection matrices can also be 
interpreted as multi-view projection because we are making use of information from multiple 
projection views. In fact, we do not necessarily need to average the energy for multiple 
projections, and instead we can use maximum operation (or some other meaningful 

aggregation operations. Then the objective becomes 𝑚𝑎𝑥𝑐 ∑ ∑ 𝑓𝑠
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1 (‖

𝑃𝑐𝑤̂𝑖

‖𝑃𝑐𝑤𝑖‖
−

𝑃𝑐𝑤̂𝑗

‖𝑃𝑐𝑤𝑗‖
‖). 

Considering that we aim to minimize this objective, the problem is in fact a min-max 
optimization. Note that, we will typically reinitialize the random projection matrices every 
certain number of iterations to avoid trivial solutions. Most importantly, using RP can provably 
preserve the angular similarity. 

Angle-preserving Projection for CoMHE 

Recall that we aim to find a projection to project the neurons to a low-dimensional space that 
best preserves angular information. We transform the goal to an optimization: 

                               𝑃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑃 ℒ𝑃: = ∑ (𝜃(𝑤̂𝑖,𝑤̂𝑗)
− 𝜃(𝑃𝑤̂𝑖,𝑃𝑤̂𝑗)

)
2

𝑖≠𝑗                                (5) 

where 𝑃 ∈ ℝ(𝑘+1)×(𝑑+1) is the projection matrix and 𝜃(𝑣1,𝑣2) denotes the angle between vi and 

v2.For implementation convenience, we can replace the angle with the cosine value (e.g use 

𝑐𝑜𝑠 (𝜃(𝑤̂𝑖,𝑤̂𝑗)
) to replace e 𝜃(𝑤̂𝑖,𝑤̂𝑗)

), so that we can directly use the inner product of normalized 
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vectors to measure the angular similarity. With 𝑃̂ obtained in Eq.5，we use a nested loss 
function 

𝐸𝑠
𝐴(𝑊̂𝑁, 𝑃∗): = ∑ ∑ 𝑓𝑠

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

(‖
𝑃∗𝑤̂𝑖

‖𝑃∗𝑤̂𝑖‖
−

𝑃∗𝑤̂𝑗

‖𝑃∗𝑤̂𝑗‖
‖) 

                              s.t. 𝑃∗ =𝑎𝑟𝑔𝑚𝑖𝑛𝑃 ∑ (𝜃(𝑤̂𝑖,𝑤̂𝑗)
− 𝜃(𝑃𝑤̂𝑖,𝑃𝑤̂𝑗)

)
2

𝑖≠𝑗                     (6) 

for which we propose two different ways to optimize the projection matrix P. We can 
approximate P* using a few gradient descent updates. Specifically, we use two different ways 
to perform the optimization. Naively, we use a few gradient descent steps to update P in order 
to approximate P*and then update WN, which proceeds alternately. The number of iteration 
steps that we use to update P is a hyperparemter and needs to be determined by cross-
validation. Besides the naive alternate one, we also use a different optimization of WN by 
unrolling the gradient update of P. 

    Alternating optimization. The alternating optimization is to optimize P alternately with the 
network parameters WN. Specifically, in each iteration of updating the network parameters, we 
update P every number of inner iterations and use it as an approximation to P* (the error 
depends on the number of gradient steps we take). Essentially, we are alternately solving two 
separate optimization problems for P and WN with gradient descent. 

    Unrolled optimization. Instead of naively updating WN with approximate P* in the alternating 
optimization, the unrolled optimization further unrolls the update rule of P and embed it within 
the optimization of network parameters WN. If we denote the CoMHE loss with a given 
projection matrix P as 𝐸𝑠

𝐴(𝑊𝑁 , 𝑃) which takes WN and P as input, then the unrolled 

optimization is essentially optimizing 𝐸𝑠
𝐴 (𝑊𝑁 , 𝑃 − 𝜂 ⋅

𝜕ℒ𝑃

𝜕𝑃
). It can also be viewed as minimizing 

the CoMHE loss after a single step of gradient descent w.r.t. the projection matrix. This 
optimization includes the computation of second-order partial derivatives. Note that, it is also 
possible to unroll multiple gradient descent steps. Similar unrolling is also applied in (Finn et al. 
17, Liu et al. 18, Dai et al. 18). 

Notable CoMHE Variants 

We provide more interesting CoMHE variants as an extension. We will have some preliminary 
empirical study on these variants, but our main focus is still on RP and AP. 

Adversarial Projection for CoMHE. We consider a novel CoMHE variant that adversarially 
learns the projection. The intuition behind is that we want to learn a projection basis that 
maximizes the hyperspherical energy while the final goal is to minimize this maximal energy. 
With such intuition, we can construct a min-max optimization: 

   min
𝑊̂𝑁

max
𝑃

𝐸𝑠
𝑉(𝑊𝑁 , 𝑃) ≔ ∑ ∑ 𝑓𝑠(‖

𝑃𝑤𝑖

‖𝑃𝑤𝑖‖
−

𝑃𝑤𝑗

‖𝑃𝑤𝑗‖
‖)𝑁

𝑗=1,𝑗≠𝑖
𝑁
𝑖=1      (7) 

which can be solved by gradient descent similar to (Goodfellow et al. 14). From a game-

theoretical perspective, P and 𝑊̂𝑁 can be viewed as two players that are competing with each 
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other. However, due to the instability of solving the min-max problem, the performance of this 
projection is unstable. 

Group CoMHE. Group CoMHE is a very special case in the CoMHE framework. The basic idea is 
to divide the weights of each neuron into several groups and then minimize the hyperspherical 
energy within each group. For example in CNNs, group MHE divides the channels into groups 
and minimizes within each group the MHE loss. Specifically, the objective function of group 
CoMHE is. 

                                     𝐸𝑠
𝐺(𝑊̂𝑁):=

1

𝐶
∑ ∑ ∑ 𝑓𝑠

𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1

𝐶
𝑐=1 (‖

𝑃𝑐𝑤̂𝑖

‖𝑃𝑐𝑤̂𝑖‖
−

𝑃𝑐𝑤̂𝑗

‖𝑃𝑐𝑤̂𝑗‖
‖)            (8) 

where Pc is a diagonal matrix with every diagonal entry being either 0 or 1, and ∑ 𝑃𝑐𝑐 = 𝐼 (in 
fact, this is optional). There are multiple ways to divide groups for the neurons, and typically we 
will divide groups according to the channels, similar to (Wu et al. 18). More interestingly, one 
can also divide the groups in a stochastic fashion. 

Shared Projection Basis in Neural Networks 

In general, we usually need different projection bases for neurons in different layers of the 
neural network. However, we find it beneficial to share some projection bases across different 
layers. We only share the projection matrix for the neurons in different layers that have the 
same dimensionality. For example in a neural network, if the neurons in the first layer have the 
same dimensionality with the neurons in the second layer, we will share their projection matrix 
that reduces the dimensionality. Sharing the projection basis can effectively reduce the number 
of projection parameters and may also reduce the inconsistency within the hyperspherical 
energy minimization of projected neurons in different layers. Most importantly, it can 
empirically improve the network generalizability while using much fewer parameters and saving 
more computational overheads. 

Subsection 3.3 Theoretical Insights 

Angle Preservation 

We start with highly relevant properties of random projection and then delve into the angular 
preservation. 

Lemma 1 (Mean Preservation of Random Projection). For any 𝑤1, 𝑤2 ∈ ℝ𝑑 and any random 

Gaussian distributed matrix 𝑃 ∈ ℝ𝑘×𝑑 where 𝑃𝑖𝑗 =
1

√𝑛
𝑟𝑖𝑗, if 𝑟𝑖𝑗, ∀𝑖, 𝑗 are i.i.d. random variables 

from N(0,1), we have 𝔼(⟨𝑃𝑤1, 𝑃𝑤2⟩) = ⟨𝑤1, 𝑤2⟩. 

This lemma indicates that the mean of randomly projected inner product is well preserved, 
partially justifying why using random projection actually makes senses. 

Johnson-Lindenstrauss lemma (JLL, Kaban 15) establishes a guarantee for the Euclidean 
distance between randomly projected vectors. However, JLL does not provide the angle 
preservation guarantees. It is nontrivial to provide a guarantee for angular similarity from JLL. 
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Theorem 1  (Angle Preservation I). Given 𝑤1, 𝑤2 ∈ ℝ𝑑, 𝑃 ∈ ℝ𝑘×𝑑 is a random projection 
matrix that has ii.d. 0-mean σ-subgaussian entries, and 𝑃𝑤1, 𝑃𝑤2 ∈ ℝ𝑘  are the randomly 
projected vectors of w1, w2 under P. Then ∀𝜖 ∈ (0,1), we have that 

                              
𝑐𝑜𝑠(𝜃(𝑤1,𝑤2))−𝜖

1+𝜖
< 𝑐𝑜𝑠(𝜃(𝑃𝑤1,𝑃𝑤2)) <

𝑐𝑜𝑠(𝜃(𝑤1,𝑤2))+𝜖

1−𝜖
              (9) 

which holds with probability (1 − 2 𝑒𝑥𝑝 (−
𝑘𝜖2

8
))

2

. 

Theorem 2  (Angle Preservation II). Given 𝑤1, 𝑤2 ∈ ℝ𝑑, 𝑃 ∈ ℝ𝑘×𝑑 is a Gaussian random 

projection matrix where 𝑃𝑖𝑗 =
1

√𝑛
𝑟𝑖𝑗 (𝑟𝑖𝑗, ∀𝑖, 𝑗 are i.i.d. random variables from N(0.1). and 

𝑃𝑤1
, 𝑃𝑤2

∈ ℝ𝑘  are the randomly projected vectors of w1, w2 under P. Then ∀𝜖 ∈ (0,1) and 

𝑤1
⊤𝑤2 > 0, we have that 

1+𝜖

1−𝜖
𝑐𝑜𝑠(𝜃(𝑤1,𝑤2)) −

2𝜖

1−𝜖
< 𝑐𝑜𝑠(𝜃(𝑃𝑤1,𝑃𝑤2)) <

1−𝜖

1+𝜖
𝑐𝑜𝑠(𝜃(𝜔1,𝑤2)) +

1+2𝜖

1+𝜖
−

√(1−𝜖2)

1+𝜖
 (10) 

which holds with probability 1 − 6 𝑒𝑥𝑝 (−
𝑘

2
(
𝜖2

2
−

𝜖3

3
)). 

Theorem 1 is one of our main theoretical results and reveals that the angle between randomly 
projected vectors is well preserved. Note that, the parameter o of the subgaussian distribution 
is not related to our bound for the angle, so any Gaussian distributed random matrix has the 
property of angle preservation. The projection dimension k is related to the probability that the 
angle preservation bound holds. Theorem 2 is a direct result from [49]. It again shows that the 
angle between randomly projected vectors is provably preserved. 

Both Theorem 1 and Theorem 2 give upper and lower bounds for the angle between randomly 

projected vectors. If 𝜃(𝑤1, 𝑤2) > 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝜖+3𝜖2

3𝜖+𝜖2), then the lower bound in Theorem I is tighter 

than the lower bound in Theorem 2. If 𝜃(𝑤1,𝑤2) > 𝑎𝑟𝑐𝑐𝑜𝑠 (
1−3𝜖2−(1−𝜖)√1−𝜖2

3𝜖−𝜖2
), the upper bound 

in Theorem I is tighter than the upper bound in Theorem 2.  

To conclude, Theorem 1 gives tighter bounds when the angle of original vectors is large. Since 
AP is randomly initialized every certain number of iterations and minimizes the angular 
difference before and after the projection, AP usually performs better than RP in preserving 
angles. Without the angle-preserving optimization, AP reduces to RP. 

Statistical Insights 

We can also draw some theoretical intuitions from spherical uniform testing (Cuesta-Albertos 
et al. 09) in statistics. Spherical uniform testing is a nonparametric statistical hypothesis test 
that checks whether a set of observed data is generated from a uniform distribution on a 
hypersphere or not. Random projection is in fact an important tool in statistics to test the 
uniformity on hyperspheres, while our goal is to promote the same type of hyperspherical 
uniformity(i.e., diversity). Specifically, we have N random samples 𝑤1,⋯ ,𝑤𝑁 of 𝑆𝑑-valued 
random variables, and the random projection p which is another random variable independent 
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of 𝑤𝑖, ∀𝑖 and uniformly distributed on 𝑆𝑑. The projected points of 𝑤𝑖, ∀𝑖 is 𝑦𝑖 = 𝑝⊤𝑤𝑖, ∀𝑖 . The 
distribution of 𝑦𝑖 , ∀𝑖 uniquely determines the distribution of w1, as is specified by Theorem 3. 

Theorem 3 (Unique Distribution Determination of Random Projection). Let w be a 𝑆𝑑-valued 

random variable and p be a random variable that is uniformly distributed on 𝑆𝑑 and 
independent of w. With probability one, the distribution of w is uniquely determined by the 
distribution of the projection of w on p. More specifically, if w1 and w2 are 𝑆𝑑-valued random 
variables, independent of p and we have a positive probability for the event that P takes a value 
P0 such that the two distributions satisfy 𝑝0

⊤𝑤1~𝑝0
⊤𝑤2, then w1 and w2 are identically 

distributed. 

Theorem 3 shows that the distributional information is well preserved after random 
projection, providing the CoMHE framework a statistical intuition and foundation. We 
emphasize that the randomness here is in fact very crucial. For a fixed projection po, Theorem 3 
does not hold in general. As a result, random projection for CoMHE is well motivated from the 
statistical perspective. 

Insights from Random Matrix Theory 

Random projection may also impose some implicit regularization to learning the neuron 
weights.[51] proves that random projection serves as a regularizer for the Fisher linear 
discrimination classifier. From metric learning perspective, the inner product between neurons 
𝑤1

⊤𝑤2 will become 𝑤1
⊤𝑃⊤𝑃𝑤2 where 𝑃⊤𝑃 defines a specific form of (lowrank) similarity 

(Durrant et al. 15). Baranjuk et al. (08) proves that random projection satisfying the JLL w.h.p 
also satisfies the restricted isometry property(RIP) w.h.p under sparsity assumptions. In this 
case, the neuron weights can be well recovered (Plan & Vershynin 13). These results imply that 
randomly projected neurons in CoMHE may implicitly regularize the network. 

Bilateral projection for CoMHE. If we view the neurons in one layer as a matrix 𝑊 =
{𝑤1,⋯ ,𝑤𝑛} ∈ ℝ𝑚×𝑛 where m is the dimension of neurons and n is the number of neurons, 
then the projection considered throughout the paper is to left-multiply a projection matrix 𝑃1 ∈
ℝ𝑟×𝑚 to W. In fact, we can further reduce the number of neurons by right-multiplying an 
additional projection matrix 𝑃2 ∈ ℝ𝑛×𝑟 to W. Specifically, we denote that Y1=P1W and Y2=WP2. 
Then we can apply the MHE regularization separately to column vectors of Y1 and Y2. The final 
neurons are still W. More interestingly, we can also approximate W with a low-rank 

factorization [56]: 𝑊̃ = 𝑌2(𝑃1𝑌2)
−1𝑌1 ∈ ℝ𝑚×𝑛. It inspires us to directly use two set of 

parameters Y1 and Y2 to represent the equivalent neurons W and apply the MHE regularization 

separately to their column vectors. Different from the former case, we use 𝑊̃ as the final 
neurons. 

Constructing random projection matrices. In random projection, we typically construct 
random matrices with each element drawn i.i.d. from a normal distribution. However, there are 
many more choices for constructing a random matrices that can provably preserve distance 
information. For example, we have subsampled randomized Hadamard transform (Ailon & 
Chazelle 06) and count sketch-based projections (Charikar et al. 04). 

Comparison to existing works.  One of the widely used regularizations is the orthonormal 
regularization [32,59] that minimizes ‖𝑊⊤𝑊 − 𝐼‖𝐹 where W denotes the weights of a group of 
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neurons with each column being one neuron and I is an identity matrix. [9,29] are also built 
upon orthogonality. In contrast, both MHE and CoMHE do not encourage orthogonality among 
neurons and instead promote hyperspherical uniformity and diversity. 

Randomness improves generalization. Both RP and AP introduce randomness to CoMHE, 
and the empirical results show that such randomness can greatly benefit the network 
generalization. It is well-known that stochastic gradient is one of the key ingredients that help 
neural networks generalize well to unseen samples. Interestingly, randomness in CoMHE also 
leads to a stochastic gradient (Kawaguchi et al. 18) also theoretically shows that randomness 
helps generalization, partially justifying the effectiveness of CoMHE. 

Subsection 3.4 Experiments & Results 

Image Recognition 

We perform image recognition to show the improvement of regularizing CNNs with CoMHE. 
Our goal is to show the superiority of CoMHE rather than achieving state-of-the-art accuracies 
on particular tasks. For all the experiments on CIFAR-10 and CIFAR-100 in the paper, we use the 
same data augmentation as (He et al. 16). For ImageNet-2012, we use the same data 
augmentation in (Liu et al. 17). We train all the networks using SGD with momentum 0.9. All the 
networks use BN (Ioffe & Szegedy 15) and ReLU if not otherwise specified. By de-fault, all 
CoMHE variants are built upon half-space MHE.  

Ablation Study and Exploratory Experiments 

Method Error (%) 

Baseline 28.03 

Orthogonal 27.01 

SRIP 25.80 

MHE 26.75 

HS-MHE 25.96 

G-CoMHE 25.08 

RP-CoMHE (max) 24.77 

AP-CoMHE (alter.) 24.95 

AP-CoMHE (unroll) 24.33 

Table 3.1: CoMHE variants on C-100. 

Variants of CoMHE. We compare different variants of CoMHE with the same plainCNN-9. 
Specifically, we evaluate the baseline CNN without any regularization, half-space MHE(HS-MHE) 
which is the best MHE variant from [12], random projection CoMHE(RP-CoMHE), RP-CoMHE 
(max) that uses max instead of average for loss aggregation, angle-preserving projection 
CoMHE(AP-CoMHE), adversarial projection CoMHE(Adv-CoMHE) and group 
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Projection Dimension 10 20 30 40 80 

RP-CoMHE 25.48 25.32 24.60 24.75 25.46 

AP-CoMHE (alter.) 25.21 24.60 24.95 24.97 24.99 

AP-CoMHE (unroll.) 25.32 24.59 24.33 24.93 25.12 

Table 3.2: Error (%) on CIFAR-100 under different dimension of projection. 

CoMHE(G-CoMHE) on CIFAR-100. For RP, we set the projection dimension to 30(i.e., k=29) 
and the number of projection to 5(i.e, C=5). For A, the number of projection is 1and the 
projection dimension is set to 30. For AP, we evaluate both alternating optimization and 
unrolled optimization. In alternating optimization, we update the projection matrix every 10 
steps of network update. In unrolled optimization, we only unroll one-step gradient in the 
optimization. For G-CoMHE, we construct a group with every 8 consecutive channels. All these 
design choices are obtained using cross-validation. We will also study how these 
hyperparameters affect the performance in the following experiments. The results in Table 3.1 
show that all of our proposed CoMHE variants can outperform the original half-space MHE by a 
large margin. The unrolled optimization in AP-CoMHE shows the significant advantage over 
alternating one and achieves the best accuracy. Both Adv-CoMHE and G-CoMHE achieve decent 
performance gain over HS-MHE, but not as good as RP-CoMHE and AP-CoMHE. Therefore, we 
will mostly focus on RP-CoMHE and AP-CoMHE in the remaining experiments. 

Dimension of projection. We evaluate how the dimension of projection (i.e., k) affects the 
performance. We use the plain CNN-9 as the backbone network and teston CIFAR-100. We fix 
the number of projections in RP-CoMHE to 20. Because AP-CoMHE does not need to use 
multiple projections to reduce variance, we only use one projection in AP-CoMHE. Results are 
given in Table 3.2. In general, RP-CoMHE and AP-CoMHE with different projection dimensions 
can consistently and significantly outperform the half-space MHE, validating the effectiveness 
and superiority of the proposed CoMHE framework. Specifically, we find that both RP-CoMHE 
and AP-CoMHE usually achieve the best accuracy when the projection dimension is 20 or 30. 
Since the unrolled optimization in AP-CoMHE is consistently better than the alternating 
optimization, we stick to the unrolled optimization for AP-CoMHE in the remaining experiments 
if not otherwise specified. 

Number of projections. We evaluate RP-CoMHE under different numbers of projections. 
We use the plain CNN-9 as the baseline and test on CIFAR-100.Results in Table 3.3 show that 
the performance of RP-CoMHE is generally not very sensitive to the number of projections. 
Surprisingly, we find that it is not necessarily better to use more projections for variance 
reduction. Our experiment show that using 5 projections can achieve the best accuracy. It may 
be because large variance can help the solution escape bad local minima in the optimization. 
Note that, we generally do not use multiple projections in AP-CoMHE, because AP-CoMHE 
optimizes the projection and variance reduction is unnecessary. Our results do not show 
performance gain by using multiple projections in AP-CoMHE. 

# Proj. RP-CoMHE AP-CoMHE 



 

 
Design of Resilient Smart Highway Systems with Data-Driven Monitoring from Networked Cameras   16 

1 25.11 24.33 

5 24.39 24.34 

10 25.11 24.36 

20 24.60 24.38 

30 24.82 24.52 

80 24.92 24.56 

Table 3.3: Error (%) on CIFAR-100 under different numbers of projections. 

 

Width t=1 t=2 t=4 t=8 t=16 t=20 

Baseline 47.72 38.64 28.13 24.95 24.44 23.77 

MHE 36.84 30.05 26.75 24.05 23.14 22.36 

HS-MHE 35.16 29.33 25.96 23.38 21.83 21.22 

RP-CoMHE 34.73 28.92 24.39 22.44 20.81 20.62 

AP-CoMHE 34.89 29.01 24.33 22.6 20.72 20.50 

Table 3.4: Error (%) on CIFAR-100 with different network width. 

Network width. We evaluate RP-CoMHE and AP-CoMHE with different network width on 
CIFAR-100. We use the plain CNN-9 as our backbone network architecture, and set its filter 
number in Conv1.x, Conv2.x and Conv3.x to 16×t,32×tand 64×t, respectively. Specifically, we 
test the cases where t=1,2,4,8,16. Taking t=2 as an example, then the filter numbers in Convl.x, 
Conv2.x and Conv3.x are 32,64 and 128, respectively. For RP, we set the projection dimension 
to 30 and the number of projection to 5. For AP, the number of projection is 1 and the 
projection dimension is set to 30. The results are shown in Table 3.4. Note that, we use the 
unrolled optimization in AP-CoMHE. From Table 3.4, one can observe that the performance 
gains of both RP-CoMHE and AP-CoMHE are very consistent and significant. With wider 
network, CoMHE also achieves better accuracy. Compared to the strong results of half-space 
MHE, CoMHE still obtains more than 1% accuracy boost under different network width. 

Network depth. We evaluate RP-CoMHE and AP-CoMHE with different network depth on 
CIFAR-100. We use three plain CNNs with 6,9 and 15 convolution layers, respectively. For all the 
networks, we set the filter number in Conv1.x, Conv2.x and Conv3.x to 64,128 and 256, 
respectively. For RPC, we set the projection dimension to 30 and the number of projection to 5. 
For AP, the number of projection is 1 and the projection dimension is set to 30. Table 3.5 shows 
that both RP-CoMHE and AP- 

Depth CNN-6 CNN-9 CNN-15 

Baseline 32.08 28.13 N/C 

MHE 28.16 26.75 26.90 
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HS-MHE 27.56 25.96 25.84 

RP-CoMHE 26.73 24.39 24.21 

AP-CoMHE 26.55 24.33 24.55 

Table 3.5: Error on CIFAR-100 with different network depth. N/C denotes Not Converged. 

CoMHE can outperform half-space MHE by a considerable margin while regularizing a plain 
CNN with different depth. 

Effectiveness of optimization. To verify that our CoMHE can better minimize the 
hyperspherical energy, we compute the hyperspherical energy E2(Eq.1) for baseline CNN and 
CNN regularized by orthogonal regularization, HS-MHE, RP-CoMHE and AP-CoMHE during  

 

Figure 3.2: Hyperspherical energy during training.  

training. Note that, we compute the original hyper-spherical energy rather than the energy 
after projection. All the networks use exactly the same initialization (the initial hyperspherical 
energy is the same). The results are averaged over five independent runs. We show the 
hyperspherical energy after the 20000-th iteration, because at the beginning of the training, 
hyperspherical energy fluctuates dramatically and is unstable. From Figure 3.2, one can observe 
that both RP-CoMHE and AP-CoMHE can better minimize the hyperspherical energy. RP-CoMHE 
can achieve the lowest energy with smallest standard deviation. From the absolute scale, the 
optimization gain is also very significant. In the high-dimensional space, the variance of 
hyperspherical energy is usually small(already close to the smallest energy value) and is already 
difficult to minimize. 

ResNet with CoMHE. A1l the above experiments are performed using VGG-like plain CNNs, so 
we use the more powerful ResNet [1] to show that CoMHE is architectur-eagnostic. We use the 
same experimental setting in [60] for fair comparison. We use a standard ResNet-32 as our 
baseline. From the results in Table 3.6, one can observe that both RP-CoMHE and AP-CoMHE 
can consistently outperform half-space MHE, showing that CoMHE can boost the performance 
across different network architectures. More interestingly, theResNet-32 regularized by CoMHE 
achieves impressive accuracy and is able to outperform the 1001-layer ResNet by a large 
margin. Additionally, we note that from Table 3.4, we can regularize a plain VGG-like 9-layer 
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CNN with CoMHE and achieve 20.81% error rate, which is nearly 2% improvement over the 
1001-layer ResNet. 

Method C-10 C-100 

ResNet-110 6.61 25.16 

ResNet-1001 4.92 22.71 

Baseline 5.19 22.87 

Orthogonal 5.02 22.36 

SRIP 4.75 22.08 

MHE 4.72 22.19 

HS-MHE 4.66 22.04 

RP-CoMHE 4.59 21.82 

AP-CoMHE 4.57 21.63 

Table 3.6: Error (%) using ResNets. 

Large-scale Recognition on ImageNet-2012 

Method Res-18 Res-34 Res-50 

Baseline 32.95 30.04 25.30 

Orthogonal 32.65 29.74 25.19 

Orthnormal 32.61 29.75 25.21 

SRIP 32.53 29.55 24.91 

MHE 32.50 29.60 25.02 

HS-MHE 32.45 29.50 24.98 

RP-CoMHE 31.90 29.38 24.51 

AP-CoMHE 31.80 29.32 24.53 

Table 3.7: Top-1 center crop error on ImageNet. 

We evaluate CoMHE for image recognition on ImageNet-2012 (Russakovsky et al. 14). We 
perform the experiment using ResNet-18, ResNet-34 and ResNet-50, and then report thetop-1 
validation error (center crop) in Table 3.7. Our results show consistent and significant 
performance gain of CoMHE in all ResNet variants. Compared to the baselines, CoMHE can 
reduce the top-1 error for more than 1%. Since the computational overhead of CoMHE is 
almost neglectable, the performance gain is obtained without many efforts. Most importantly, 
as a plug-in regularization, CoMHE is shown to be architecture-agnostic and produces 
considerable accuracy gain in most circumstances. 
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Figure 3.3: Visualized first-layer filters.  

Besides the accuracy improvement, we also visualize in Figure 3.3 the 64 filters in the first-
layer learned by the baseline ResNet and the proposed CoMHE-regularized ResNet. The filters 
look quite different after we regularize the network using CoMHE. Each filter learned by 
baseline focuses on a particular local pattern (e.g, edge, color and shape) and each one has a 
clear local semantic meaning. In contrast, filters learned by CoMHE focuses more on edges, 
textures and global patterns which do not necessarily have a clear local semantic meaning. 
However, from a represen-tation basis perspective, having such global patterns may be 
beneficial to the recognition accuracy. We also observe that filters learned by CoMHE pay less 
attention to color. 

Point Cloud Recognition 

We evaluate CoMHE on point cloud recognition. Our goal is to vali-date the effectiveness of 
CoMHE on a totally different network architecture with a different form of input data structure, 
rather than achieving state-of-the-art performance on point cloud recognition. To this end, we 
conduct experiments on widely used neural networks that handles point clouds: Point-Net (PN, 
Qi et al. 17) and PointNet++ (PN++, Qi et al. 17). We combine half-space MHE, RP-CoMHE and 
AP-CoMHE into PN(without T-Net), PN(with T-Net) and PN++. We test the performance on 
ModelNet-40 (Wu et.al 15). Specifically, since PN can be viewed as 1×1 convolutions before the 
max pooling layer, we can apply all these MHE variants similarly to CNN. After the max pooling 
layer, there is a standard fully connected network where we can still apply the MHE variants. 
We compare the performance of regularizing PN and PN++with half-space MHE, RP-COMHE or 
AP-CoMHE. 

Table 3.8 shows that all MHE variants consistently improve PN and PN++, while RP-CoMHE 
and AP-CoMHE again perform the best among all. We demonstrate that CoMHE is generally 
useful for different types of input data (not limit to images) and different types of neural 
networks. CoMHE is also useful in graph neural networks. 

Method PN PN (T) PN++ 

Original 87.1 89.20 90.07 

MHE 87.31 89.33 90.25 

HS-MHE 87.44 89.41 90.31 

RP-CoMHE 87.82 89.69 90.52 
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AP-CoMHE 87.85 89.70 90.56 

Table 3.8: Accuracy (%) on ModelNet-40. 

Subsection 3.5 Concluding remarks 

Since naively minimizing hyperspherical energy yields suboptimal solutions, we propose a novel 
framework which projects the neurons to suitable spaces and minimizes the energy there. 
Experiments validate CoMHE's superiority. 
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Section 4: Traffic control under faulty sensing 
Subsection 4.1: Introduction 

In this section, we study the traffic routing problem in the presence of unreliable sensing. 
Feedback dynamic routing is a commonly used control strategy in transportation systems. This 
class of control strategies relies on real-time information about the traffic state in each link. 
However, such information may not always be observable due to temporary sensing faults. In 
this article, we consider dynamic routing over two parallel routes (e.g. in Fig. 4.1), where the 
sensing on each link is subject to recurrent and random faults. The faults occur and clear 
according to a finite-state Markov chain. When the sensing is faulty on a link, the traffic state 
on that link appears to be zero to the controller. Building on the theories of Markov processes 
and monotone dynamical systems, we derive lower and upper bounds for the resilience score, 
i.e. the guaranteed throughput of the network, in the face of sensing faults by establishing 
stability conditions for the network. We use these results to study how a variety of key 
parameters affect the resilience score of the network. The main conclusions are: (i) Sensing 
faults can reduce throughput and destabilize a nominally stable network; (ii) A higher failure 
rate does not necessarily reduce throughput, and there may exist a worst rate that minimizes 
throughput; (iii) Higher correlation between the failure probabilities of two links leads to 
greater throughput; (iv) A large difference in capacity between two links can result in a drop in 
throughput. 
 

 

Figure 4.1: Selection over parallel routes. 

Subsection 4.2: Modeling 

Consider the two-link network in Figure 4.2. Let 𝑈𝑘(𝑡) be the flow into link 𝑘 ∈ {1, 2} and 𝑋𝑘(𝑡) 
be the traffic density of link 𝑘 at time 𝑡. The capacity of link k is 𝐹𝑘 ∈  [0, 1] where 𝐹1  +  𝐹2  =

 1. The flow out of link k is 𝑓𝑘(𝑋𝑘(𝑡)), which is specified by the flow function 

𝑓𝑘(𝑥𝑘)  =  𝐹𝑘(1 − 𝑒−𝑥𝑘  ), 𝑘 =  1, 2. 

The source node is subject to a constant demand η ≥ 0, which is considered as a model 
parameter rather than a state or input variable in the subsequent analysis. 
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Figure 4.2: Two parallel routes (left) with four failure modes (right). 

Travelers can observe the state 𝑋(𝑡). However, the observation is not always accurate. We 
consider the sensing on each link to be stochastically switching between a “good” and a “bad” 
mode. That is, we consider a set 𝑆 =  {1, 2, 3, 4} of sensing fault modes. The network switches 
between the two modes according to the Markov chain in Figure 4.2. Each mode 𝑠 ∈  𝑆 is 
characterized by a fault mapping 𝑇𝑠 ∶  ℝ≥0

2 → ℝ≥0
2  such that 

𝑇1(𝑥) = [
𝑥1

𝑥2
] , 𝑇2(𝑥) = [

0
𝑥2

] , 𝑇3(𝑥) = [
𝑥1

0
] , 𝑇4(𝑥) = [

0
0
]. 

In mode 𝑠, the observed state is 𝑥̂ = 𝑇𝑠(𝑥). At the source node, the demand η is distributed to 
each link according to a routing policy 𝜇:ℝ≥0

2 → ℝ≥0
2  , which specifies the fraction of inflow that 

goes to each link according to the logit model 

𝜇𝑘(𝑥) =
𝑒−𝛽𝑥̂𝑘

∑ 𝑒−𝛽𝑥̂𝑗2
𝑗=1

, 𝑘 = 1,2. 

Note that the routing is based on the observed state rather than the true state. 

For notational convenience, with a slight abuse of notation, we write 𝜇(𝑠, 𝑥) = 𝜇(𝑇𝑠(𝑥)). That 

is, the routing policy can be viewed as a switching function 𝜇: 𝑆 × ℝ≥0
2  →  [0, 1]2 with a 

discrete argument 𝑠 ∈  𝑆 and a continuous argument 𝑥 ∈ ℝ≥0
2 . Finally, we emphasize that we 

consider 𝜂 as a model parameter rather than a state or input variable in the subsequent 
analysis. 

Then, we define the dynamics of the hybrid-state process {(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0} as follows. The 
discrete-state process {𝑆(𝑡); 𝑡 >  0} of the mode is a time-invariant finite-state Markov process 
that is independent of the continuous-state process {𝑋(𝑡); 𝑡 >  0} of the traffic densities. The 
state space of the finite-state Markov process is S. The transition rate from mode 𝑠 to mode 𝑠0 
is 𝜆𝑠,𝑠0

. Without loss of generality, we assume that 𝜆𝑠,𝑠 = 0 for all 𝑠 ∈  𝑆 [23]. Hence, the 

discrete-state process evolves as follows: 

Pr{𝑆(𝑡 + 𝛿) = 𝑠′|𝑆(𝑡) = 𝑠} = 𝜆𝑠,𝑠′𝛿 + 𝑜(𝛿), ∀𝑠′ ≠ 𝑠, ∀𝑠 ∈ 𝑆. 

where 𝛿 denotes infinitesimal time. We assume that the discrete-state process is ergodic [24] 
and admits a unique steady-state probability distribution {𝑝𝑠;  𝑠 ∈  𝑆} satisfying 

𝑝𝑠 ∑ 𝜆𝑠,𝑠′ = ∑ 𝑝𝑠′𝜆𝑠′,𝑠,

𝑠′≠𝑠𝑠′≠𝑠 

 ∀𝑠 ∈ 𝑆, 

𝑝𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, 
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∑𝑝𝑠

𝑠∈𝑆

= 1. 

The continuous-state process {𝑋(𝑡); 𝑡 >  0} is defined as follows. For any initial condition 
𝑆(0)  =  𝑠 and 𝑋(0)  =  𝑥, 

𝑑

𝑑𝑡
𝑋𝑘(𝑡) = 𝜂𝜇𝑘(𝑆(𝑡), 𝑋(𝑡)) − 𝑓𝑘(𝑋(𝑡)), 𝑡 ≥ 0, 𝑘 = 1,2. 

Note that the routing policy 𝜇 and the flow function 𝑓 ensure that 𝑋(𝑡) is continuous in 𝑡. We 

can define the flow dynamics with a vector field 𝐺 ∶  𝑆 ×  ℝ≥0
2  →  ℝ2  as follows: 𝐺(𝑠, 𝑥) ≔

𝜂𝜇(𝑠, 𝑥) − 𝑓(𝑥). The joint evolution of 𝑆(𝑡) and 𝑋(𝑡) is in fact a piecewise-deterministic 
Markov process and can be described compactly using an infinitesimal generator  

ℒ𝑔(𝑠, 𝑥) = (𝜂𝜇(𝑠, 𝑥) − 𝑓(𝑥))
𝑇
∇𝑥𝑔(𝑠, 𝑥) + ∑ 𝜆𝑠,𝑠′(𝑔(𝑠′, 𝑥) − 𝑔(𝑠, 𝑥))

𝑠′∈𝑆

. 

for any differentiable function 𝑔.  

The network is stable if there exists 𝑍 <  ∞ such that for any initial condition (𝑠, 𝑥) ∈ 𝑆 × ℝ≥0
2  

lim sup𝑡→∞

1

𝑡
∫ 𝐸[|𝑋(𝑟)|]𝑑𝑟 ≤ 𝑍.

𝑡

𝑟=0

 

This notion of stability follows a classical definition [25], some authors name it as “first-moment 
stable” [26]. The rest of this paper is devoted to establishing and analyzing the relation 
between the stability of the continuous-state process {𝑋(𝑡); 𝑡 >  0} and the demand η. 

Subsection 4.2: Analysis 

The main result of this section is as follows. 

Theorem 1. Consider two parallel links with sensors switching between two modes as defined in 
section 4.1. 

i) A necessary condition for stability is that 

𝜂 (
1

𝑒−𝛽𝑥2 + 1
𝑝2 +

1

2
𝑝4) ≤ 𝐹1, 

𝜂 (
1

𝑒−𝛽𝑥1 + 1
𝑝3 +

1

2
𝑝4) ≤ 𝐹1, 

𝜂 < 1. 

where 𝑥𝑘 is the solution to 

𝜂
𝑒−𝛽𝑥𝑘

1 + 𝑒−𝛽𝑥𝑘
= 𝐹𝑘(1 − 𝑒−𝑥𝑘) 

for 𝑘 =  1, 2. 

ii) A sufficient condition for stability is that there exists 𝜃 ∈ ℝ≥0
2  such that 
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∑𝑝𝑠 max
𝑘∈{1,2}

{𝜂
𝑒−𝛽𝑇𝑠,𝑘(𝜃𝑘)

𝑒−𝛽𝑇𝑠,𝑘(𝜃2) + 𝑒−𝛽𝑇𝑠,𝑘(𝜃1)
− 𝐹𝑘(1 − 𝑒−𝜃𝑘)} < 0

4

𝑠=1

. 

The rest of this subsection is devoted to the proof of the above result. 

Proof of sufficiency: 

An apparent necessary condition for stability is 𝜂 < 1. If this does not hold, then the network is 
unstable even in the absence of sensing faults [27]. First, an invariant set of the process 
{𝑋(𝑡); 𝑡 >  0} is 𝑀 =  [𝑥1 , ∞)  ×  [𝑥2 , ∞). To see this, note that for any 𝑠 ∈  𝑆 and for any 
(𝑥1, 𝑥2) ∈ 𝑀𝑐, the vector 𝐺 of time derivatives of the traffic densities has a non-zero 
component that points to the interior of the invariant set 𝑀; see Figure 4.3. 

 

Figure 4.3: Illustration of the continuous state process and the invariant set 𝑴. The arrows 
represent the vector field 𝑮 defined in (7) for the four states. 

Second, by ergodicity of the process {(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0}, we have for 𝑘 ∈  {1, 2}, 

𝑋𝑘(𝑡) = 𝑋𝑘(0) = ∫ (𝑢𝑘(𝜏) − 𝑓𝑘(𝜏))𝑑𝜏
𝑡

𝜏=0

, 

where 𝑢𝑘(𝜏) and 𝑓𝑘(𝜏) are inflow and outflow of link k at time 𝜏. Since lim
𝑡→∞

1

𝑡
𝑋𝑘(0) = 0 and 

lim
𝑡→∞

1

𝑡
𝑋𝑘(𝑡)  =  0 a.s., then 

0 = lim
𝑡→∞

1

𝑡
(∫ (𝑢𝑘(𝜏) − 𝑓𝑘(𝜏))𝑑𝜏

𝑡

0

+ 𝑋𝑘(0) − 𝑋𝑘(𝑡)) = lim
𝑡→∞

1

𝑡
∫ (𝑢𝑘(𝜏) − 𝑓𝑘(𝜏))𝑑𝜏

𝑡

0

  𝑎. 𝑠. 

Note that 𝑓𝑘(𝜏) ≤ 𝐹𝑘 for any 𝜏 ≥  0 and 𝑘 ∈  {1, 2}, hence 

lim
𝑡→∞

1

𝑡
∫ 𝑢𝑘(𝜏)𝑑𝜏

𝑡

0

= lim
𝑡→∞

1

𝑡
∫ 𝑓𝑘(𝜏)𝑑𝜏

𝑡

0

≤ lim
𝑡→∞

1

𝑡
∫ 𝐹𝑘𝑑𝜏

𝑡

0

= 𝐹𝑘. 

According to the definition of steady-state probability, 

lim
𝑡→∞

1

𝑡
∫ 𝕀𝑆(𝜏)=𝑠𝑑𝜏

𝑡

0

= 𝑝𝑠, 𝑎. 𝑠.  ∀𝑠 ∈ 𝑆. 

Combining with (12), we obtain 
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𝐹1 ≥ lim
𝑡→∞

1

𝑡
∫ 𝑢1(𝜏)𝑑𝜏

𝑡

0

= lim
𝑡→∞

1

𝑡
∫ 𝜂𝜇1(𝑆(𝜏), 𝑋(𝜏))𝑑𝜏

𝑡

0

= 𝜂 lim
𝑡→∞

1

𝑡
∑∫ 𝕀𝑆(𝜏)=𝑠𝜇1(𝑆(𝜏), 𝑋(𝜏))𝑑𝜏

𝑡

0

4

𝑠=1

≥ 𝜂 lim
𝑡→∞

1

𝑡
(∫ 𝕀𝑆(𝜏)=10𝑑𝜏

𝑡

0

+ ∫ 𝕀𝑆(𝜏)=2

1

1 + 𝑒−𝛽𝑥2
 𝑑𝜏

𝑡

0

+ ∫ 𝕀𝑆(𝜏)=30𝑑𝜏
𝑡

0

+ ∫ 𝕀𝑆(𝜏)=4

1

2
𝑑𝜏

𝑡

0

) = 𝜂 (
1

1 + 𝑒−𝛽𝑥2
∫ 𝕀𝑆(𝜏)=2𝑑𝜏

𝑡

0

+
1

2
lim
𝑡→∞

1

𝑡
∫ 𝕀𝑆(𝜏)=4𝑑𝜏

𝑡

0

)

= 𝜂 (
𝑝2

1 + 𝑒−𝛽𝑥2
+

𝑝4

2
), 

which gives (9a). We can prove (9b) in a similar way. 

Proof of necessity: 

Suppose that there exists a vector 𝜃 ∈ ℝ≥0
2   satisfying (10). Then, for the hybrid process 

{(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0}, consider the Lyapunov function 

𝑉(𝑠, 𝑥) =
1

2
((𝑥1 − 𝜃1)+ + (𝑥2 − 𝜃2)+)2 + 𝑎𝑠((𝑥1 − 𝜃1)+ + (𝑥2 − 𝜃2)+) 

where (𝑥𝑘  −  𝜃𝑘)+ =  𝑚𝑎𝑥{0, 𝑥𝑘  −  𝜃𝑘}, 𝑘 =  1, 2, and the coefficients as are given by 

 

[

𝑎1

𝑎2
𝑎3

𝑎4

] =

[
 
 
 
 
 
 
 − ∑𝜆1𝑖

𝑖≠1

𝜆12

𝜆21 −∑𝜆2𝑖

𝑖≠2

𝜆13 𝜆14

𝜆23 𝜆24

𝜆31 𝜆32

1 0

−∑𝜆3𝑖

𝑖≠3

𝜆34

0 0 ]
 
 
 
 
 
 
 
−1

[
 
 
 
𝐺̅ − 𝐺(1, 𝜃)

𝐺̅ − 𝐺(2, 𝜃)

𝐺̅ − 𝐺(3, 𝜃)
1 ]

 
 
 

 

where 𝐺 is defined in (7) and  𝐺̅ =  ∑ 𝑝𝑠𝐺(𝑠, 𝜃)𝑠∈𝑆 . Based on the ergodicity assumption of the 
mode switching process, the matrix in the above must be invertible. This Lyapunov function is 
valid in that 𝑉 (𝑠, 𝑥)  →  ∞ as |𝑥| →  ∞ for all 𝑠. Define 

𝔇𝑠 = max
𝑘∈{1,2}

(𝜇𝑘(𝑠, 𝜃) − 𝑓𝑘(𝜃𝑘)),   𝑠 ∈ 𝑆. 

The Lyapunov function 𝑉 essentially penalizes the quantity (𝑥 − 𝜃)+, which can be viewed as a 
“derived state”. Apparently, boundedness of 𝑋(𝑡) is equivalent to the boundedness of 
(𝑋(𝑡) −  𝜃)+ Note that the dynamic equation of the derived state (𝑥 −  𝜃)+ is slightly different 
from that of 𝑥: 

𝑑

𝑑𝑡
(𝑋𝑘(𝑡) − 𝜃𝑘)+ = 𝐷𝑘(𝑆(𝑡), 𝑋(𝑡)) ≔ {

𝜇𝑘(𝑆(𝑡), 𝑋(𝑡)) − 𝑓𝑘(𝑋(𝑡)) 𝑋𝑘(𝑡) > 𝜃𝑘 ,

(𝜇𝑘(𝑆(𝑡), 𝑋(𝑡)) − 𝑓𝑘(𝑋(𝑡)))
+

𝑋𝑘(𝑡) = 𝜃𝑘 ,

0 otherwise,

  𝑘 = 1,2. 

Applying the infinitesimal generator to the Lyapunov function, we obtain 
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ℒ𝑉(𝑠, 𝑥) = ∑ ∑𝐷𝑗(𝑠, 𝑥)(𝑥𝑘 − 𝜃𝑘)+

2

𝑗=1

2

𝑘=1

+ ∑ (𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠) ∑(𝑥𝑘 − 𝜃𝑘)+

2

𝑘=1

) + ∑ 𝑎𝑠,𝑘𝐷𝑘(𝑠, 𝑥)

2

𝑘=1𝑠′≠𝑠

= (∑ 𝐷𝑘

2

𝑘=1

(𝑠, 𝑥) + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥𝑘 − 𝜃𝑘)+| + ∑ 𝑎𝑠,𝑘𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

. 

This proof establishes the stability of the process {(𝑆(𝑡), 𝑋(𝑡)); 𝑡 >  0} by verifying that the 
Lyapunov function 𝑉 as defined above satisfies the Foster-Lyapunov drift condition for stability  

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × ℝ≥0
2  

for some 𝑐 >  0 and 𝑑 <  ∞, where |𝑥| is the one-norm of 𝑥; this condition will imply (8). To 
proceed, we partition ℝ≥0

2 , the space of 𝑥, into two subsets: 

𝒳0 = {𝑥: 0 ≤ 𝑥 ≤ 𝜃},𝒳1 = 𝒳0
𝐶; 

that is, 𝑋0 and 𝑋1 are the complement to each other in the space ℝ≥0
2 . In the rest of this proof, 

we first verify (16) over 𝑋0 and then over 𝑋1. To verify (16) over 𝑋0, note that 𝜇 and 𝑓 are 
bounded functions, so, for any 𝑎𝑠,𝑘, there exists 𝑑 <  ∞ such that 

𝑑1 ≥ 𝑎𝑠 ∑ 𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

  ∀(𝑠, 𝑥) ∈ 𝑆 × ℝ≥0
2 . 

In addition, (𝑥𝑘  − 𝜃𝑘)+  =  0, 𝑘 =  1, 2, . . . , 𝐾 for all 𝑥 ∈  𝑋0; this and (15) imply ℒ𝑉(𝑠, 𝑥) ≤
𝑑1. Furthermore, for any 𝑐 >  0, there exists 𝑑2  =  𝑐|𝜃| such that 𝑑2  ≥  𝑐|𝑥| for all 𝑥 ∈  𝑋0. 
Hence, letting 𝑑 =  𝑑1  + 𝑑2, we have 

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × 𝒳0. 

To verify (16) over 𝑋1, we further decompose 𝑋1 into the following subsets: 

𝒳1
1 = {𝑥 ∈ 𝒳1: 𝑥1 ≥ 𝜃1, 𝑥2 < 𝜃2}, 

𝒳1
2 = {𝑥 ∈ 𝒳1: 𝑥1 < 𝜃1, 𝑥2 ≥ 𝜃2}, 

𝒳1
3 = {𝑥 ∈ 𝒳1: 𝑥1 ≥ 𝜃1, 𝑥2 ≥ 𝜃2}. 

For each 𝑥 ∈  𝑋1
1, we have 

ℒ𝑉(𝑠, 𝑥) = (𝐷1(𝑠, 𝑥) + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥 − 𝜃)+| + 𝑎𝑠 ∑ 𝐷𝑘(𝑠, 𝑥)

2

𝑘=1

≤ ((𝜇1(𝑠, 𝑥) − 𝑓1(𝑥1)) + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥 − 𝜃)+| + 𝑑1

≤ (𝔇𝑠 + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

) |(𝑥 − 𝜃)+| + 𝑑1. 



 

 
Design of Resilient Smart Highway Systems with Data-Driven Monitoring from Networked Cameras   27 

From the definition of 𝑎𝑠, we have 

𝔇𝑠 + ∑ 𝜆𝑠,𝑠′(𝑎𝑠′ − 𝑎𝑠)

𝑠′≠𝑠

=
1

4
∑ 𝑝𝑠′𝔇𝑠′

𝑠′∈𝑆

. 

The above and (20) imply 

ℒ𝑉(𝑠, 𝑥) ≤
1

4
(∑ 𝑝𝑠′𝔇𝑠′𝑠′∈𝑆 . )|𝑥| + 𝑑, 𝑥 ∈ 𝒳1

1. 

Let 𝑐 ≔ −
1

4
∑ 𝑝𝑠′𝐷𝑠′𝑠′∈𝑆 . Hence, we have 

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × 𝒳1
1. 

Analogously, we can show 

ℒ𝑉(𝑠, 𝑥) ≤ −𝑐|𝑥| + 𝑑  ∀(𝑠, 𝑥) ∈ 𝑆 × (𝒳1
2 ∪ 𝒳1

3), 

which completes the proof. 

Subsection 4.3: Results 

In this section, we study the resilience score, i.e. the guaranteed throughput (the supremum of 
η that maintains stability), under various scenarios. We first consider two symmetric links and 
focus on the impact of transition rates of the discrete state. Then, we study how the 
throughput varies with the asymmetry of the links. 

If the two links are homogeneous in the sense that they have same flow functions 𝑓1  =  𝑓2, we 
have the main result of this section as follows: 

Proposition 1. For the homogeneous network, the resilience score 𝜂∗ , i.e. the guaranteed 
throughput has a lower bound of 

𝜂∗ ≥
1

1 + 𝑝2 + 𝑝3
. 

Next, we discuss how characteristics of link failures (specifically, link failure rate and link failure 
correlation) affect the resilience score. Table 4.1 lists the nominal values considered in this 
subsection. 

Parameter Notation Nominal value 

Link 1 capacity 𝐹1 0.5 

Link 2 capacity 𝐹2 0.5 

Routing sensitivity to 
congestion 

𝛽 1 

   

Table 4.1: Nominal model parameters 

Link failure rate: Suppose that the health of each link is independent of the other link. 
Furthermore, suppose that the failure rates of both links are identical, denoted as 𝑝, then 
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𝑝2 + 𝑝4 = 𝑝 = 𝑝3 + 𝑝4, 

𝜂∗ =
1

1 + 𝑝2 + 𝑝3
=

1

1 + 2𝑝(1 − 𝑝)
. 

When the link failure rate is either 0 or 1, the two-link network becomes open-loop, the lower 
bound can naturally be 1. The lower bound reaches minimum when the link failure rate is 0.5; 
see Figure 4.4. 

 

Figure 4.4: Impact of link failure probability (𝝆 =  𝟎) and link failure correlation (𝒑 =  𝟎. 𝟓) 
on the lower bound of resilience score. 

Link failure correlation: Suppose that the health of each link is correlated with the other link 
while the failure rates of both links are still identical. Denote the correlation as 𝜌, then 

𝜌 =
𝑝4 − (𝑝2 + 𝑝4)(𝑝3 + 𝑝4)

√𝑝2𝑝3

=
𝑝 − 𝑝2 − 𝑝2

𝑝
, 

𝜂∗ =
1

1 + 𝑝2 + 𝑝3
=

1

1 + 2𝑝(1 − 𝑝 − 𝜌)
. 

As the link failure correlation increases from −𝑝 to 1 −  𝑝, the lower bound increases from 
1

1+2𝑝
 to 1. When the failure of the two links are strongly (positively) correlated, the two-link 

network also turns to be open-loop and hence the lower bound reaches 1; see Figure 4.4. 

Now we relax the assumption of symmetric links and allow 𝐹1 ≠ 𝐹2. Without loss of generality, 
we assume that 𝐹1  ≥  𝐹2. Instead, we will consider symmetric failure rate, i.e. 𝑝2  =  𝑝3. The 
following result links the resilience score to |𝐹1  − 𝐹2|, which quantifies the asymmetry of links: 

Proposition 2. Suppose that 𝑝2  =  𝑝3 and 𝐹1  ≥  𝐹2. Then, the resilience score has a lower 
bound of 

𝜂∗ ≥ min {
1 − (𝐹1 − 𝐹2)

1 − 𝑝1
,
1 − 𝑝4(𝐹1 − 𝐹2)

1 + 2𝑝2
}. 

The proofs of Propositions 1 and 2 are available in (Xie & Jin 2020). 

Now we are ready to discuss how link capacity difference affects the resilience score. When 

𝐹1  =  𝐹2, the lower bound is 
1

1+2𝑝2
 , in consistence with our lower bound in subsection 4.1, and 

the upper bound is 1 (note that when √2 𝑚𝑎𝑥{𝑝2, 𝑝3}  +  𝑝4 ≤  1, we can derive 𝜂 <  1 from 
the necessary condition). 
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As 𝐹1 − 𝐹2 increases, the lower bound gradually drops and after certain point, it drops faster to 
0 while the upper bound remains 1 for a while and then drops to 0. It means that when the 
difference between two link capacities gets larger, one link starts getting more congested than 
the other, then the system can be less stable. 

When 𝐹1  →  1, 𝐹2  →  0, the network has weak resilience to the sensing faults and the 
resilience score tends to be zero. 

Subsection 4.4: Extension to general networks 

We also briefly introduce an important extension that we made for the model described in 
Subsection 4.1. In this extension, we extend our analysis from a two parallel routes to general 
networks. Here we elaborate on our methodology and the main results. Mathematical details 
are available in (Tang & Jin). 

We consider a single-origin-single-destination, acyclic network with a time-invariant inflow at 
the origin; see Figure 4.5. Our model considers rather general flow dynamics and control 
actions; importantly, it allows congestion propagation (i.e. spillback). We use finite-state 
Markov process to model the occurrence and clearance of a broad class of cyber-physical 
disruptions. Cyber disruptions can either modify the mapping from the true states to the 
observed states (sensing faults) or disable/corrupt actuators so that no control instruction or a 
biased control instruction is implemented (actuating faults), and physical disruptions can 
influence the flow functions. The proposed model belongs to a class of models called piecewise-
deterministic Markov processes (PDMP), where continuous states (traffic densities) evolve 
according to multiple sets of ordinary differential equations and a discrete state (modes) 
determines the mode of the continuous dynamics (Davis 84). Besides, our model is also related 
to stochastic hybrid systems (Hu et al. 00) and Markov jump systems (Zhang et al. 08). 

 

Figure 4.5: Network structure. 

With the PDMP network model, we study the impact of cyber-physical disruptions on network 
throughput. We define throughput as the maximal inflow at the origin under which the network 
can be stabilized, i.e. traffic densities in all links being bounded on average. Our stability 
analysis is based on a Lyapunov-function approach (Meyn & Tweedie 93) and properties of 
PDMPs (Davis 84). Although the generic theory is well developed, the implementation in our 
problem is challenging due to the non-linear and possibly non-smooth flow dynamics. To 
address this challenge, we utilize properties of the monotone dynamics (Hirsch 85, Smith 08) of 
the network model to establish an easy-to-check stability condition (Tang & Jin, Theorem 1). 
Our stability analysis contributes to the literature on stochastic fluid models, which has been 
focusing on the steady-state distribution of single or tandem links with Markovian inflow or 
capacity (Anick et al. 82, Kulkarni 97, Kroese & Scheinhardt 01). 
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Next, we propose control design based on the stability analysis. In practice, a key challenge for 
resilient control is that one cannot always have a full observation of network states and 
disruption modes. We focus on three typical cases. In the first case, the network links may have 
finite storage spaces, and the system operator can observe disruption modes. For this case, we 
show that there must exist a mode-dependent control that will attain the expected-min-cut 
capacity of the network (Tang & Jin, Theorem 2). In the second case, all of the network links 
have infinite storage space, and the system operator has no observation but perfect knowledge 
of disruptions. For this case, we propose an open-loop control that attains the min-expected-
cut capacity of the network (Tang & Jin, Theorem 3). These results are analogous to the classical 
max-flow min-cut theorem (Dantzig & Fulkersen 03). In the third case, the system observer can 
only observe traffic densities. We propose a density-dependent control that mitigates 
congestion spillback and provide a lower bound for the guaranteed throughput (Tang & Jin, 
Theorem 4). Finally, we use numerical examples to demonstrate that our control design 
approach can enhance the network resiliency. 

Subsection 4.5: Subsequent work: Simulation of I210 

As a follow-up work of this project, we will validate our results on I210. We have created a 
simulation testbed for traffic flow on Interstate I210 near Los Angeles. This model will be used 
for simulating sensing faults and the impact of feedback ramp control. 

 

Figure 4.6: Simulation testbed for I210 near Los Angeles. 
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Section 5: Conclusions 
In this project, we considered the traffic monitoring and control problem in the presence of 
unstable sensing. We explored ideas from computer vision and traffic control, which provides a 
basis for subsequent implementation. 

For traffic control, we propose a two-link dynamic flow model with sensing faults to study the 
stability conditions and guaranteed throughput of the network. Based on this model, we are 
able to derive lower and upper bounds of the resilience score and analyze the impact of 
transition rates and heterogeneous link capacities on them. This work can be extended in 
several directions. First, we can consider a complicated network with k links (not necessarily 
parallel) rather than a simple two parallel link network. Second, other forms of flow functions 
can be assumed in the model. Third, the logit model can be replaced with other routing polices. 
Last, several variations of fault modes can also be discussed. 
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